Epigraoh
Created|Updated|Optimization
|Post Views:
次水平集和超水平集
次水平集
定义
对于
性质
是凸的 是凸的 - 但是反过来不成立
超水平集
定义
对于
性质
是 concave 是 convex
Definition
Define the epigraph of function
Property
is convex is convex is convex is concave
Author: Eric Li
Copyright Notice: All articles on this blog are licensed under CC BY-NC-SA 4.0 unless otherwise stated.
Related Articles
2023-10-13
锥(Cone)
Proper cone真锥是满足以下定义的锥 K is convex K is closed K is solid, which means it has nonempty interior K is not pointed, which means that it contains no line ()We will used the Proper cone to define the generalized inequality. Generalized inequalityDefine the generalized inequality with a proper cone is belowand define a strict partial order by
2023-10-26
Conjugate Function
Definition It’s conjugate(共轭) function is . 注意,这里其实 在输入之后是固定的,是平移 取到距离最远的点 Property 永远是凸函数 if is convex and closed 如果 是凸的并且是可微的,那么$$f^*(y) x^{T} \nabla f(x^) - f(x^*) = x^{*T} y -$$
2023-10-13
凸函数定义
定义 if convex if 定义域是凸的 满足 感性理解:任意的直线在函数上方 if strictly convex if 定义域是凸的 满足 和上面那个只差一个负号 特殊性质仿射函数既是凸函数,又是凹函数 基于导数的其它定义方式First-order condition如果函数 是可微的,那么函数 是凸的当且仅当 is convex For all Second-order condition如果 是二阶可微的,那么 是凸的当且仅当 的定义域是凸的 For all 这里的 是Hesson矩阵,考虑是不是正定的 判定方法0阶条件定义法:利用定义域中所有的直线和它相交![[image/Pasted image 20231109200631.png]]注意,这里的 中的 是任意一个 1阶条件![[image/Pasted image 20231109200748.png]] 2阶条件![[image/Pasted image 20231109200833.png]]
2023-10-13
凸性(Convexity)
DefinitionA set is convex if for any , any , we have How to judge whether a set is convexWay 1The first way is to use the Definition![[Convexity#Definition]] Way 2The second way is that a set is convex if and only if the intersection intersection with an arbitrary line is convex. That is to say, if we let and let we would have which becomes a one-variable function. We could only consider the convexity of . Note: The here represents the starting point of a line and the vector ...
2023-10-13
对偶锥(Dual cone)
Dual coneDefinitionDual cone of a given cone K is Property is convex even if is not. if and only if is the normal of a hyperplane that support at the origin换句话说,只有当向量 是锥 的在顶点处的一个支撑超平面的法向量的时候,才会属于它的对偶锥,如图形象一些理解的话,就是想象一个原来的锥 ,然后对偶锥就是对两条边界射线做垂线,这两条垂线内部就是对偶锥。 implies if has nonempty interior, then is pointed Dual Generalized Inequalities![[Cone#Generalized inequality]] if and only if for all Proof Dual Characterization of Minimum Elementx is the minimum element of , with...
2023-10-19
保凸运算
Nonnegative Weighted sumsFinite sums , is convex is convex Infinite sums略 Composition with an affine mapping Affine mappingsholds convexity Pointwise Maximum is convexis convex Proof is simple. Compositions h,g are convex is convex in some conditions <!–TODO: finish convex conditions>
Announcement
The blog is now under construction